Licensing constraints and the internal structure of Laurentian French Vowels

Philippe Gauthier - pgauthi3@uwo.ca
Presented at: 2020 meeting of the Canadian Linguistics Association

Current state of Affaires

- A complete analysis of Laurentian French (LF) vowel system has eluded phonologists for decades;
- Several attempts have come close (Côté 2010, Déchaîne 1991, Dumas 1981, Poliquin 2007, McLaughlin 1986, Reighard 1986)
- Many propose descriptive analyses: distribution of vowels, list of phonemes, etc.
- Few offer explanatory analyses that answer these questions:
- "What are the properties of LF that entail the phonological phenomena that are observed?"
- "What is the underlying structure of the vowel system?"
- My goal:
- To sketch out an analysis of LF that has both descriptive and explanatory power;
- that both (1) describes the state of affaires in LF;
- and (2) explains why we see the phonological phenomena that we do

The facts of LF

- Distribution of tenseness - word-final syllable:
- Vowels generally obey the "Loi de position" (e.g. see Lyche and Durand, 2004):
- + TENSE \rightarrow "open syllables"
- open $\sigma \quad\left[\begin{array}{ll}\text { y u e } \varepsilon & \varnothing \\ \text { o }\end{array}\right]$
- closed σ [I Y v ε œ $]$ brique, flute, coupe, faite, jeune, poste
- Two vowel-lengthening contexts can "override" the loi de position (c.f. Côté, 2010): (A) lexically long vowels, and (B) voiced-fricative lengthening
(Only a subset of vowels are shown here for simplicity)
- A. [ø: o:] jeûne, paume
- B. [i: y: u:] cire, pure, sourd
- Distribution of tenseness - non-final syllable:
- In non-final position, much more variation exists; high vowels exhibit vowel harmony in the following way:
- - TENSE \rightarrow followed by a - TENSE +HIGH vowel; +TENSE \rightarrow elsewhere
a) VH
[r]...[r]
vinyle
b) no VH
[i]...[ε m mitaine
c) "opaque VH"
[r]...[i:]
missive

The facts of LF -2

- Summary:
- Vowels prefer to be tense at the end of a word;
- Vowels prefer to be lax and short OR tense and long when followed by a word-final consonant
- The phonology distinguishes a high lax vowel from a mid lax vowel for the purposes of vowel harmony (both in the trigger AND target)

Government Phonology; Insights from GP 2.0

- Quick history:
- GP 1.0 (KLV 1985, 1990, Charette 1991) is "flat" linear phonology (see Scheer 2013) based on elements

An example of GP 1.0 representation:

- Representations are strings of CV pairs (or O(nset) and N(ucleus)); generally, "coda" consonants are represented as onsets of following empty nuclei
- An element is a fully specified feature matrix and hence fully interpretable; elements are privative;
- 3 main elements used to describe vowels:
- $|\mathbf{I}|=$ "frontness"
- $|\mathrm{U}|=$ "roundness"
- $|\mathrm{A}|=$ "lowness"
- Main innovations in GP 2.0 (see Pöchtrager 2006; Pöchtrager 2018) :
- Replacing "flat" phonology with tree structures (based on X-bar)
- Central idea: If it interacts with structure, then it must be structure
- Replacing $|\mathrm{A}|$ with structure: a low vowel has 'more structure' than a high vowel
- Vowel length is represented by how many points (x's) a nuclear head is in relation with (i.e. how many points it 'licenses')

An example of GP 2.0 representation:

Current Proposal -1

- A nuclear head position is represented by "x";
- Nuclear heads can merge with a complement (x) and project to a bar position (x^{\prime}); can also merge with a projection (i.e. bar position);
- For simplicity, I use "N" (rather than x ' or x ") to represent the highest nuclear projection here
- N can then merge with consonants (C), thereby projecting upwards even further ($\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$, etc.)
- Basic vowel structure (all possibilities shown):

Current Proposal -2

- Assumption: higher heads always project to N in Laurentian French

- high vowels

Mid vowels

Low vowels

Current Proposal -3

- Recall: High vowels form a natural class with respect to vowel harmony

$\mathrm{mid} / \mathrm{low}$ vowels contain 2 nuclear heads

Current Proposal -4

- Basic Higher structure (see Pöchtrager 2006 for a detailed explanation of this structure)
- Here we focus on nuclear structure, hence consonant structure is obscured (triangles)
- We are also focusing on "higher" structure here, so lower structure is obscured here (3 vertical dots)
- Nucleus can merge with a consonant on its right $\left(\mathrm{C}_{2}\right)$ and/or its left $\left(\mathrm{C}_{1}\right)$

Higher consonant

Constraint on "lower consonant":
Must be the final consonant of the domain (§ Pochtrager, 2006, p. 122)

This ensures that only word-final consonants merge here

Current Proposal -5

- Each non-head position must be in a licensing relationship (see Pöchtrager 2006 for a list of possible licensing relationships; see Pöchtrager 2020 for the original discussion over the insight into tenseness used in the current analysis)
- For our purposes, I will use arrows to illustrate a licensing relationship; the type of license is omitted
- Recall: tense vowels need not be followed by a consonant; Lax vowels only appear before a consonant
- We can represent this in the following way:
- A (non-head) x-point within a vowel must always be licensed;
- an x within lax vowels enters into a licensing relationship with the "following consonant";
- The same x point within tense vowels is licensed by the nuclear head

Licensed from within

Lax
Licensed from without

Current Proposal -6

(a)

(b)

(c)

(d)

- Note: in LF, we will posit that it is always the lowest head that bears the elements
- Consonants merged in the nuclear structure licence the available x-point (b, d)
- When no such licenser is available, the x-point has no choice but to get licensed by the nuclear head (a, c)
- In high vowels, elements are annotated on the higher projection (which is the only available). This leaves them free to "percolate" or influence higher structure.
- In mid vowels, elements are annotated on lower projection. This creates a barrier in their realm of influence.

Current Proposal -7

- In both cases: final consonant licenses the available x-point; the nuclear head is free (but not obligated) to license other notes
- In (a): nuclear head in N_{1} licenses the available x-point in the preceding high vowel, both of which are visible to each other;
- In (b), nuclear head in N_{1} is blocked by the higher nuclear head, so cannot influence preceding vowel
(a)

Non-VH:
(b)

Final Consonant
[u]

Current Proposal -8

- Some final observations and points for future research:
- A. What is the exact nature of "license from within" and "license from without"? Crucially, are they the same thing?
- At first blush, they seem different. For example, lexically long vowels only appear long when followed by a final consonant. So there is a possible outside licenser available. But, according to Pöchtrager 2006, length is encoded as m-command from the nuclear head. So "license from within" wins out and forms a long (and tense) vowel.
- B. What is the nature of the relationship between the two internal nuclear heads?
- At first blush, the idea that a barrier is formed between the two nuclear heads also explains why only high front vowels trigger assibilation of alveolar stops ($\mathrm{t} / \mathrm{d} \rightarrow \mathrm{t}^{\mathrm{s} / \mathrm{d}^{2} \text {). If the difference between a [i] and [e] is the location of the element (higher vs. lower head), }}$ and only higher heads can percolate up the tree, then this explains why only high vowels can influence preceding stops.
- However, why does the barrier allow licensers from without to penetrate inside (e.g. in the case of a following consonant licensing a mid vowel)?
- Are there any other characteristics that separate these two heads?
- Are there languages which annotate all elements on the higher head?
- C. Lexical length vs derived length
- So far, the assumption has been that the non-head x-point seeks out a licenser, first by looking outside to a following consonant, then by looking inside, to the nuclear head.
- How do we capture a lexically long vowel in this model? What about a vowel that is lengthened due to the following consonant? These remain unclear.

Bibliography

- Charette, M. (1991). Conditions on phonological government. Cambridge: Cambridge University Press.
- Côté, M.-H. (2010). La longueur vocalique devant consonne allongeante en contexte final et dérivé en français laurentien. In Y. Frenette, F. Martineau, \& C. LeBlanc (Eds.), Vues sur les français d'ici. Presses de l'Université Laval.
- Dechaine, R.-M. (1991). Stress in Quebecois: Evidence from High Vowels. Papers from the Regional Meetings, Chicago Linguistic Society, 27(1), 107118.
- Dumas, D. (1981). Structure de la diphtongaison québécoise. The Canadian Journal of Linguistics, 26(1), 1-61.
- Kaye, J., Lowenstamm, J., \& Vergnaud, J.-R. (1985). The Internal Structure of Phonological Elements: A Theory of Charm and Government. Phonology Yearbook, 2, 305-328.
- Kaye, J., Lowenstamm, J., \& Vergnaud, J.-R. (1990). Constituent Structure and Government in Phonology. Phonology, 7(2), 193-231.
- Lyche, C., \& Durand, J. (2004). Structure et variation dans quelques systèmes vocaliques du français: L'enquête Phonologie du français contemporain (PFC). In G. Aub-Buscher, A. Coveney, M.-A. Hintze, \& C. Sanders (Eds.), Variation et francophonie: Mélanges. L’Harmattan France.
- McLaughlin, A. (1986). Les Emprunts à l'anglais et la phonologie des voyelles hautes en français montréalais. Revue québécoise de linguistique théorique et appliquée, 5(4), 179-214.
- Pöchtrager, M. A. (2006). The structure of length. Universität Wien.
- Pöchtrager, M. A. (2018). Sawing off the branch you are sitting on. Acta Lingustica Academica, 65, 47-61.
- Pöchtrager, M. A. (2020). Tense? (Re)lax! Acta Lingustica Academica, 67(1), 53-71.
- Poliquin, G. C. (2007). Canadian French vowel harmony. Harvard University.
- Reighard, J. (1986). Une analyse concrète du système vocalique du français montréalais. Revue quebecoise de linguistique theorique et appliquee, 5(4), 281-308.
- Scheer, T. (2013). Why phonology is flat: The role of concatenation and linearity. Language Sciences, 39, 54-74.

