ACL/CLA May 31, 2020

Voice Quality of Gitksan Ejectives

Una Y. Chow una.chow@ubc.ca

1. Introduction

- Gitksan is an endangered Tsimshianic language spoken by ~500 speakers in northwestern British Columbia [1].
- Its ejectives are characterized as "lenis" [2]. •
- During the stop-vowel transition, "lenis" ejectives typically have creaky voice in the following vowel [3].
- Schwan [4] compared creaky voice between plain and glottalized stops in Gitksan:
- The amplitude difference between the first two • harmonics (H1-H2) at vowel onset showed that glottalized stops were produced with more creaky voice by one of the three speakers only.

2. Gitksan stops and vowels

Table 1. Gitksan initial prevocalic stops [2,6]

Stops	Bilabial	Alveolar	Palatal	Labiovelar	Uvular
Plain	b	d	Ţ	gw	G
Ejective	p'	ť	C'	k ^w '	q'

Gitksan vowels [7]

- /a aː/
- /eː/

• /i iː/

• /oː/

3. Corpus

Gitksan language consultants

- Two male adult first-language speakers:
- HH from Gitsegukla
- VG from Gitanyow

Stimuli

- English words from the Gitksan-English dictionary [9] and Gitksan grammar [6]:
 - The words' translations in Gitksan contain an initial prevocalic stop.

Elicitation

4. Acoustic analysis

Dataset

- Isolated words with initial prevocalic stops
- 480 tokens (2 speakers x 2 stop types x 4 PoA x 10 words x 3 repetitions) minus 5 unanalyzable stops
- Different vowel contexts

Acoustic measures (*corrected for formant effect)

- Differences in amplitude between
- H1 and H2 (H1*-H2*)
- H1 and the first formant (H1*-A1*)
- H1 and the second formant (H1*-A2*)
- H1 and the third formant (H1*-A3*)

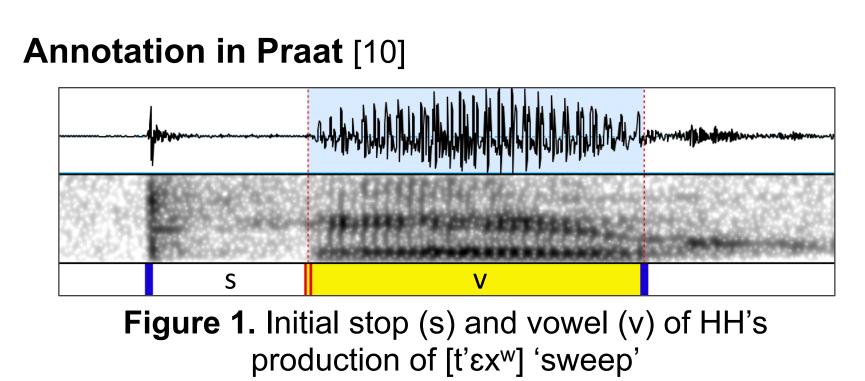
- However, there are different types of creaky voice; each one has a distinct set of acoustic measures [5].
 - E.g., a "prototypical" type is characterized by low f0, irregular f0 (correlated with high noise) and glottal constriction (correlated with low H1-H2).

Research questions

- 1) Which acoustic properties are effective measures of voice quality of Gitksan ejectives?
- 2) To what extent can these properties distinguish Gitksan ejectives from plain stops by place of articulation (PoA)?

- /u uː/ • /ə/
- Their phonetic realization may differ (e.g., $/a/ \rightarrow [e]$) [8].

Examples

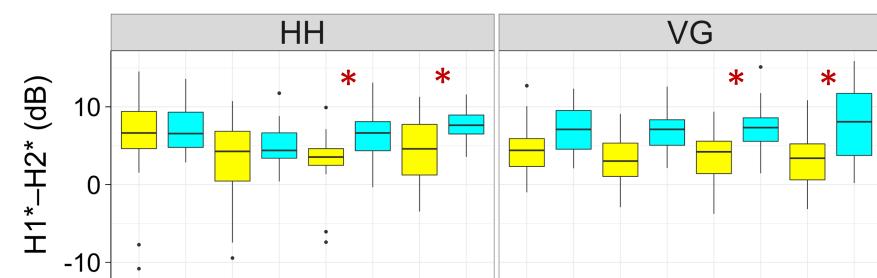

(1)	a.	[bak ^w]	'arrive'			
	b.	[duːs]	'cat'	f.	[ťaks]	'dive'
	C.	[Jiːs]	'be mistaken	g.	[c'eːç]	'tallow'
	d.	[g ^w enks]	'spring'	h.	[kʷ'oːtxʷ]	'be lost'
	e.	[GOːtʰ]	'heart'	i.	[q'aːç]	'feather'

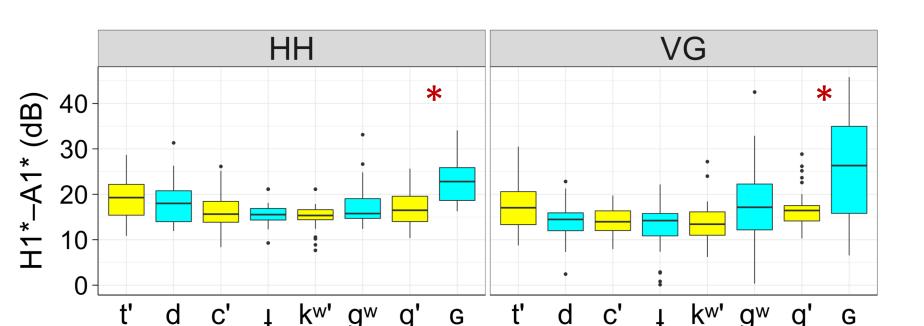
Note: [p'] rarely occurs word-initially so it is omitted in the acoustic analysis along with its [b] counterpart.

- Multiple sessions conducted at UBC in Vancouver
- The consultant was prompted with English words.
- He was asked to translate them into Gitksan or to confirm the Gitksan translations presented.

Recording

- The consultant was asked to say the translated Gitksan words naturally three times.
- The speech was recorded using a Marantz audio recorder at a sampling rate of 48 kHz in 24-bit mono.
- Only words familiar to the speaker were recorded and used in the analysis.




Acoustic measurements

• VoiceSauce [11] computed all four acoustic measures at the onset (first 20%) of the vowel.

5. Results

• For each speaker, an ANOVA with post-hoc Tukey HSD test (at α = .05) was performed on each acoustic measure, with stop type and PoA as independent variables.

alveolar palatal labiovelar uvular alveolar palatal labiovelar uvular

6. Discussion

- Comparing effectiveness of their measure of creakiness:
- H1*-A2* is likely the most effective of the four:
- It revealed that VG produced ejectives, versus plain stops, with more creaky voice at all four PoA.
- It also revealed that VG produced less creaky voice than HH did for plain stops.
- H1*-A3* is fairly effective:
 - Together with H1*-H2*, they showed that HH

7. Conclusion

- H1*-A2* and H1*-A3* are likely more effective voice quality measures of Gitksan ejectives than H1*-H2* and H1*-A1* are.
- H1*-H2*, H1*-A2*, and H1*-A3* together were able to distinguish ejectives from plain stops at all four PoA for both speakers.
- These harmonic amplitude differences are more robust, acoustic cues to stop types than to PoA in Gitksan.

d c' i k^w' g^w q' g t' d c' i k^w' g^w q' g

alveolar palatal labiovelar uvular alveolar palatal labiovelar uvular

VG HH (**B**p) 40 d alveolar palatal labiovelar uvular alveolar palatal labiovelar uvular

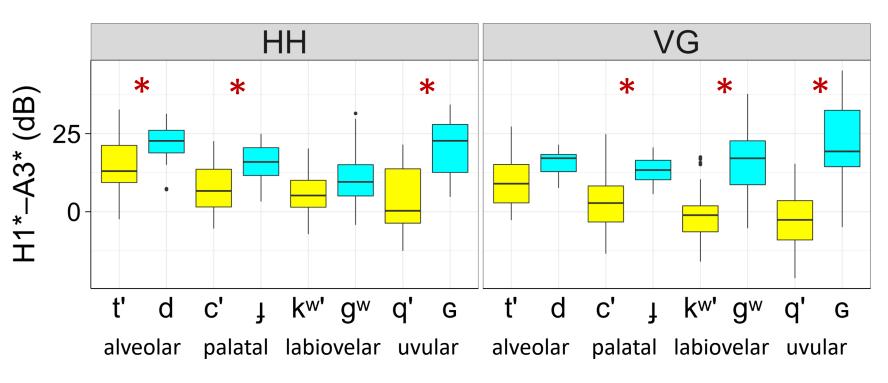


Figure 2. Harmonic amplitude differences between stop types across PoA for both speakers (HH and VG): stop pairs (yellow = ejective, cyan = plain) with significant difference at a PoA (see Table 2) are marked with *

Table 2. Significant test results (p < .05) of all four acoustic measures: "<" means "less amplitude difference (or more creaky voice)"

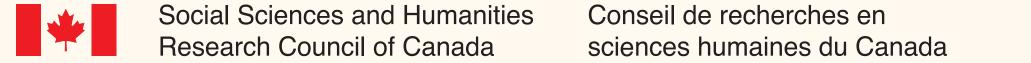
	Between stop types	Among PoA of ejectives	Among PoA of plain stops
H1*-H2*	Ejective < Plain (labiovelar, uvular)		
H1*-A1*	Ejective < Plain (uvular)	HH: labiovelar < alveolar	other 3 PoA < uvular
H1*-A2*	Ejective < Plain (HH: palatal, uvular; VG: all four PoA)	HH: palatal < other 3 PoA	HH: palatal < alveolar, uvular VG: palatal < labiovelar, uvular
H1*-A3*	Ejective < Plain (HH: all but labiovelar; VG: all but alveolar)	other 3 PoA < alveolar (except for VG's palatal: <i>p</i> > .05)	HH: labiovelar < uvular VG: palatal < uvular

Similar tests were performed comparing the speakers.

• Significant test results: (i) on H1*-A2*: HH < VG for plain stops; (ii) on H1*-A3*: VG < HH for ejectives.

- produced ejectives, versus plain stops, with more creaky voice at all four PoA.
- It revealed that both speakers produced less creaky voice for alveolar ejectives than for the other ejectives.
- It also revealed that VG produced more creaky voice than HH did for ejectives.
- H1*-H2* is less effective:
 - It revealed that both speakers produced ejectives, versus plain stops, with more creaky voice at only two PoA. (H1*-A2* revealed more PoA.)
- H1*-A1* is probably the least effective:
 - It revealed that both speakers produced ejectives, versus plain stops, with more creaky voice at uvular PoA only.
 - However, it also revealed that both speakers produced less creaky voice for uvular plain stops than for the other plain stops.
- The different degrees of effectiveness of these acoustic measures suggest that creaky voice related to Gitksan ejectives has multiple acoustic correlates.
- E.g., lower H1*-H2* values associated with labiovelar and uvular ejectives indicate that they were produced with greater glottal constriction [5].
- Lower H1*-A2* and H1*-A3* values indicate strong higher-frequency harmonics [12].

Future directions


- Include other voice quality measures (e.g., jitter and harmonic-to-noise ratio): in progress
- Investigate interspeaker variation in how creaky voice is produced in Gitksan
- Add more speakers

References

- [1] Dunlop, B., Gessner, S., Herbert, T., & Parker, A. (2018). Report on the status of B.C. First Nations languages (3rd ed.). First Peoples' Cultural Council.
- [2] Rigsby, B., & Ingram, J. (1990). Obstruent voicing and glottalic obstruents in Gitksan. International Journal of American Linguistics, 56(2), 251–263.
- [3] Fallon, P. D. (2013). The synchronic and diachronic phonology of ejectives. New York: Routledge.
- [4] Schwan, M. D. (2013). An acoustic description of glottalized obstruents in Gitksan (Honours Essay, University of British Columbia, Vancouver, Canada).
- [5] Keating, P. A., Garellek, M., & Kreiman, J. (2015). Acoustic properties of different kinds of creaky voice. Proceedings of the 18th ICPhS, Glasgow, UK.
- [6] Rigsby, B. (1986). *Gitksan grammar* (Ms., University of Queensland, Brisbane, Australia)
- [7] Brown, J., Davis, H., Schwan, M., & Sennott, B. (2016). Gitksan. *Journal of the* International Phonetic Association, 46(3), 367-378.
- [8] Borland-Walker, K. A. (2019). An acoustic investigation of vowel variation in Gitksan (Doctoral dissertation, University of Victoria, Victoria, Canada)
- [9] Hindle, L., & Rigsby, B. J. (1973). A short practical dictionary of the Gitksan
- language (Vol. 7, No. 1). Department of Sociology/Anthropology, University of Idaho. [10] Boersma, P., & Weenink, D. (2019). *Praat: Doing phonetics by computer* (Version
- 6.1.05) [Computer application]. Retrieved from http://www.praat.org
- [11] Shue, Y. L., Keating, P., Vicenik, C., & Yu, K. (2011). VoiceSauce: A program for voice analysis. Proceedings of the 17th ICPhS, Hong Kong, China, 1846–1849.
- [12] Keating, P., & Garellek, M. (2015). Acoustic analysis of creaky voice. Poster
- presented at the Annual Meeting of the Linguistic Society of America, Portland, USA.

Acknowledgements:

Thanks to the Gitksan language consultants, Vincent Gogag and Hector Hill; the UBC Gitksan Research Lab, in particular, Henry Davis, Lisa Matthewson, and Michael Schwan; and Molly Babel. This research was supported by the Jacobs Research Funds and a SSHRC doctoral scholarship.

