UBC Department of Linguistics

The syllabification of VV-sequences in Dàgáárè

Katie van Baarsen \& Terrance Gatchalian

Introduction

Anttila \& Bodomo $(2009,2019)$ propose that Dàgáárè makes crucial use of a minimally bimoraic foot, using evidence from vowellength alternations. Specifically, they propose that vowels lengthen to meet binarity requirements on the foot.

Their proposal, however, does not explicitly specify the intermediate prosodic structure. It is possible for a foot to be bimoraic in two ways:

- Monosyllabic $\quad\left[(\mu \mu)_{\sigma}\right]_{\varphi}$
- Bisyllabic $\quad\left[(\mu)_{\sigma}(\mu)_{\sigma}\right]_{\varphi}$

This poster has two goals:

1. to illustrate that both monosyllabic and bisyllabic feet are necessary to explain tonal asymmetries in VVsequences.
2. to reanalyze number marking described in Anttila \& Bodomo (2009), specifically considering the syllable structure of their vowel-epenthesis number marking.

Discussion

A database containing roughly 22500 word tokens from the variety spoken in Sombo, Ghana has been collected. While the data presented here is from published sources, we are currently in the process of comparing our results here with the data in our corpus.

Conclusions

1. Surface tone is one possible diagnostic for syllable structure:
i. Morphological concatenation leads to vowel hiatus, rather than diphthongization or long vowels
ii. Phonological lengthening is predicted to always yield level surface tone, due to monosyllabicity (only one TBU)
2. Morpheme boundaries are opaque to syllable association lines
3. Some instances of vowel-epenthetic (lengthening) number marking is moraicaffixation

Data: Lengthened vowels are always level tones
Nominal Number Action Nominals
(Anttila \& Bodomo, 2009)
(Antilia \& Bodomo, 2019)

Root	Surface
a. /bi/	[bii-ri] 'child-PL'
b. $1 \mathrm{t} /$ /	[tìi-rí] 'tree-PL'
c. /kù/	[kúú-rí 'wild.ratPL'
d. /wơ/	[wúve-rí] 'wallet-PL'
e. /gú/	[gúvi-rì] 'thorn-PL'
f. /bù/	[búv́-rí] 'goat-pL'
g. /nó/	[nćó-rì 'mouthSG'
h. /pò/	[pùò-rí] 'back-sG'
i. /yó/	[yúó-ri] 'name-sG'
j. /yò/	[yòjo-rí] 'penis-sG'

Root	Surface
a. /da/	[dáá-ú] 'buy-NMLz'
b. /kpá/	[kpáá-ì] 'boil-nmız'
c. Inyú/	[nyứú-ù] 'drink-NMLZ'
d. /I/	[i̇i-ú] 'do-nmLz'
e. /dî/	[dííl- ${ }^{\text {¢ }}$ ¢] 'take-NMLz'
f. /kye/	[kyíz-̇̇] 'cut-nmLz'
g. /kp $/^{\prime}$	[kpíe-ú] 'enter-NMLZ'
h. /gbe/	[gbíé-ú] 'grind.roughly-NMLz'
i. /kó/	[kúsó-í] 'farm-NMLz'
j. /ko/	[kúó-ú] 'dry-nmLz'

Imperfective
(Anttila \& Bodomo, 2019)

Root	Surface
a. /wa/	[wàà-rá] 'come-IPFV'
b. /la/	[làà-rá] 'laugh-IPFV'
c. /mí/	[míli-rè] 'rain-IPFV'
d. /bú/	[búひ́-rò] 'come.(of.rain)-IPFV'
e. /zú/	[zúú-rò] 'steal-IPFV'
f. /ŋme/	[ทmì̇̇-rદ́] 'beat-IPFV'
g. /kyz/	[kyìz-rı́] 'cut-IPFV'
h. /gbe/	[gbìè-ré] 'grind.roughly-IPFV'
i. /bó/	[búó-rò] 'want/look.for-IPFV'
j. /yó/	[yúó-rò 'roam-IPFV'

Data: Morphologically concatenated vowels need not be

Plural Marker /-E/ (Anttila \& Bodomo, 2009)

Root	Surface	Root	Surface
a. /gbé/	[gbé-̇̀] 'child-PL'	g. /mí/	[mí-è] 'rope-pL'
b. $/ \mathrm{l} \dot{\varepsilon} /$	[$1 \grave{\varepsilon}-\varepsilon$ ¢ $]$ 'bead-PL'	h. /kù/	[kù-é] 'hoe-PL'
c. /kpé/	[kp ε - $̀$] 'malt-PL'	I. /nó/	[nó-غ̀] 'mouth-PL'
d. /bí/	[bí-è] 'seed-PL'	j. /pò/	[pò-é] 'back-pL'
e. /pì/	[pì-é] 'rock-PL'	k. /yó/	[yó-è] 'name-PL'
f. /yi/	[yí-è] 'house-PL'	I. /ỳ̀/	[yò-é] 'penis-PL'

Key Generalizations

- Generalization 1: The tone of a lengthened vowel is level while the tones of morphologically adjacent vowels are distinct.
- Generalization 2: VV-sequences in lengthening environments restricted to \{uo, vo, ie, $\mathrm{I} \varepsilon\}$ or identical vowels

VV-sqeuences in moprhologically concatenated are \{uo, vo, ie, iع, ue, oe, $\omega \varepsilon\}$ or identical vowels

Constraints Definition

FTBIN
*STRUC(σ)
*]
*[mid][mid]

ALIGN[Suffix, L, $\boldsymbol{\sigma}, \mathrm{L}] \quad$ Assign a violation for all suffixes whose

CONTIGUITY-IO
left edge does not correspond to the left edge of the syllables.
Assign a violation for all feet that do not contain two moras.

Assign a violation for all syllables.
Assign a violation for all phonologically derived word-final [+high] vowels (Anttila \& Bodomo, 2009, 2019).

Assign a violation for adjacent mid vowels (Anttila \& Bodomo, 2009, 2019).

Assign a violation for all pairs of segments a, b such that a is adjacent to b in the input but not in the output.

Singular Marking with Epenthetic V

(Anttila \& Bodomo, 2009)
Anttila \& Bodomo (2009) analyze two cases of nomina singular V-marking as epenthesis derived due to binarity
a. and b. show cases where the vowel diphthongizes due to constraints on word-final derived high-vowels
c. and d. show cases where the epenthetic vowel appears word-medially; note the tone in these examples.

Root	Surface
a. /bì/	[bíé] 'child-sG'
b. /kù/	[kúó] 'wild.rat-sG'
c. /gbè/	[gbié] forehead-sG'
d./dè/	[dié] 'room-sG'

See tableau on following slide

The syllabification of VV-sequences in Dàgáárè

Katie van Baarsen \& Terrance Gatchalian

Accounting for Length and Diphthongization

Assume for the following that the tone-bearing unit is the syllable.
Syllable boundaries are shown with round brackets and foot boundaries are shown with square brackets. Morpheme breaks are shown with dashes.
(1) Lengthening of a root non-mid vowel before suffix

$/ \mathrm{bi}-/$	FtBin	${ }^{*} \operatorname{STRUC}(\sigma)$
a. $[(\mathrm{bi})-]$	$*!$	$*$
喝 b. $[(\mathrm{bii})-]$		$*$
c. $[(\mathrm{bi})(\mathrm{i})]-$		$* *!$

(2) Dipthongization of a root mid-vowel

/po-/	FrBin	*[mid][mid]	*StRUC(σ)
a. [(po)-]	*		*
b. [(poo)-]		*!	*
c. $[(\mathrm{po})(\mathrm{o})]-$		*!	**
${ }^{\text {(1) }}$ d. (puo)-			*

(3) Dipthongization of a root high-vowel word-finally

FTBIN	${ }^{*}[\mathrm{mid}][\mathrm{mid}]$	$\left.{ }^{*} \mathrm{I}\right]$	${ }^{*}$ STRUC (σ)	
a. $[(\mathrm{ku})]$	$*!$		$*$	$*$
b. $[(\mathrm{kuu})]$			$*!$	$*$
c. $[(\mathrm{ku})(\mathrm{u})]$			$*!$	$* *$
d. l . $[(\mathrm{kuo})]$				$*$
e. $[(\mathrm{ku})(\mathrm{o})]$				$* *$

Accounting for differing tones in morphologically complex environments

(4) No association lines across morpheme edges

/le-E/	FtBin	*[mid][mid]	*I]	Align	*Struc (σ)
a. $[(1 \varepsilon-\varepsilon)]$		*		*!	*
㖪 b. $[(1 \varepsilon)-(\varepsilon)]$		*			**

In each optimal candidate, the syllable will associate with the tonal material in a one-to-one fashion. These forms are monomorphemic and monosyllabic, so we expect only a single tone to associate with the syllable, capturing the generalization that the tone of a phonologically lengthened/diphthongized vowel is consistently a level tone.

