Orthography and variability in second language word learning:
Evidence from perception and production

Pauline Welby¹, Mélanie Clément², Jasmin Sadat³, Elsa Spinelli⁴ & Audrey Bürki⁵
¹Aix Marseille Université, CNRS, Laboratoire Parole et Langage, France
²Grenoble Alpes Université, France
³European Research Council, Belgium
⁴Grenoble Alpes Université, CNRS, Laboratoire de Psychologie et NeuroCognition, France
⁵Universität Potsdam, Germany

In a series of three experiments, we examined the roles of orthography and variability in the spoken input in second language (L2) word learning, using both perception and production tasks. Studies examining the effect of orthography on novel word learning have mostly focused on receptive vocabulary, with mixed results reported (e.g. [SI10], [ES14]). Earlier studies all report an influence of the first language (L1) orthography on L2 pronunciation accuracy (e.g. [BA17]). To our knowledge, however, no prior study has examined whether orthography influences acquisition in the L2 production lexicon ([EH07] on L1, also [SA05]). Moreover, in natural settings, new words are produced by multiple talkers. Previous studies comparing words learned with multiple vs. a single talker report contrasting results (better [BA05] or worse [MA89] recognition/perception, produced with less dispersion [KA18]).

In Exp. 1 (datasets and scripts: https://osf.io/rfjh6/), 26 native speakers of French learned English pseudowords either with the orthographic form displayed under the corresponding picture (Audio-Ortho) or without (Audio). Twenty pseudowords were constructed and recorded by a native speaker of Canadian English. Half were spelled with ⟨i⟩ (e.g. /lis/) and half with ⟨o⟩ (e.g. /moq/). Crucially, the French grapheme-to-phoneme correspondences (GTPCs) for these graphemes ⟨i⟩ ~ /i/ (e.g. disque [disk] ‘disk’ and ⟨o⟩ ~ /ɔ/ in closed syllables, e.g. bogue [bog] ‘husk’) differ from the vowel produced in the spoken stimuli and from the most common North American English GTPCs. In a picture naming task, pseudowords learned in the Audio-Ortho modality were produced faster and with fewer errors, providing a first piece of evidence that orthographic information facilitates the learning and on-line retrieval of productive vocabulary in a second language. Formant analyses, however, showed that productions from the Audio-Ortho modality were more French-like (i.e. less target-like), a result confirmed by a vowel categorization task performed by native speakers of English.

In Exp. 2 (preregistered: https://osf.io/cdh7n), 40 native speakers of French learned the same non-words as in Exp. 1. Half learned them produced by a single voice (Low variability), half by six voices (High variability). The test session included the picture naming task, a picture mapping task, and the reading of a list of French words. The results replicated those of Exp. 1: faster and more accurate responses in the Audio-Ortho modality, with more French-like pronunciations for the Audio-Ortho modality. Vowels were also more compact ([KA14]) and had shorter Euclidean distances to the read French vowels in the Audio-Ortho modality. For the picture mapping task, response accuracy was at ceiling, but RTs were faster in the Audio-Ortho than in the Audio modality. However, we found no effect of Variability in any task.

In Exp. 3, we test the hypotheses that later presentation of orthography during learning (Day 2 vs. Day 1) allows better word learning and attenuates the influence of L1 orthography on phonological representations. Sixty speakers participated, and analyses are underway.

The current results and other recent results ([RA16]) highlight the importance of expanding models of the influence of the L1 phonological system on that of L2 (e.g. [BE07]) to integrate the potential role of L1 orthography. We note that the orthography-induced phonological transfer observed here for L2 is in line with the hypothesis that orthography can modify the nature of the phonological
representations in the L1. We further note that the null results found in the picture mapping task used in our experiments and in many previous studies may simply reflect the lack of sensitivity of these offline perception tasks.

![Figure 1. Normalized F1 and F2 by vowel and presentation condition, Experiment 1 ([BL84, FL11])]()

References


